检查胰腺做什么检查| 大疱病是什么病| kaws是什么牌子| 果葡糖浆是什么| 咳嗽有痰吃什么药好得最快最有效| 退行性变是什么意思| 糯米粉可以做什么好吃的| 中间细胞百分比偏高是什么意思| 童心未眠什么意思| 6月17什么星座| 低压高是什么原因造成的| 腿肚子抽筋是什么原因| 吃坏肚子了吃什么药| 头皮发痒用什么洗发水| 梦见地震是什么意思| 什么不能带上飞机| 南瓜和窝瓜有什么区别| 男人眼角有痣代表什么| 高密度脂蛋白胆固醇偏低是什么意思| 甲子日是什么意思| 紫藤花什么时候开| 赞聊是什么意思| 低血糖的人吃什么东西最好| 包皮是什么意思| 什么不断| hct是什么意思| 伤官见官是什么意思| 头发容易油是什么原因| 推拿和按摩有什么区别| 印堂跳动是什么预兆| 什么药不能一起吃| 为什么说肺结核是穷人病| 胃胀吃什么中成药| 男生纹身纹什么好| 子宫前位和子宫后位有什么区别| 疱疹性咽峡炎吃什么药| 吃什么最补钙| 天孤星是什么意思| 黑豆不能和什么一起吃| 漏尿是什么原因引起的| wis是什么牌子| 吃鹰嘴豆有什么好处| 回执单是什么| 狗是什么属性| 什么叫甲状腺弥漫病变| 痔疮开刀后吃什么好| 茶减一笔是什么字| 角是什么生肖| 昱这个字念什么| 红牛加什么提高性功能| 女生下面什么样| 五月十二号是什么日子| 白天咳嗽晚上不咳嗽是什么原因| 抑扬顿挫什么意思| 梦见吃樱桃是什么意思| 放屁太臭是什么原因| 公知是什么意思| 211985是什么意思| 空调自动关机什么原因| 经期是什么意思| pro是什么意思| 999是什么电话| 吃什么药可以延长性功能| 喉咙发甜是什么原因| 汽车点火线圈坏了有什么症状| 眼睛模糊是什么原因| 七零年属什么生肖| 内膜薄吃什么增长最快| 煎中药用什么锅| 朱元璋为什么要杀刘伯温| 阑尾炎手术后可以吃什么| 官符是什么意思| 肠道紊乱吃什么药| 疯狂动物城里的狐狸叫什么| 舌苔白腻是什么原因| 客观原因是什么意思| 孕妇吃冰的东西对胎儿有什么影响| 梦到羊是什么意思| m是什么意思| 名分是什么意思| 晚上喝什么茶好| 被银环蛇咬了有什么症状| 急性肠胃炎有什么症状| 纯水是什么水| 感染了hpv有什么症状| 婴幼儿湿疹用什么药膏最有效| 维生素c什么时候吃| 什么叫道德| 水晶为什么要消磁| 什么人容易得多囊卵巢| 女人梦见蜈蚣预兆什么| 生育能力检查挂什么科| 猩红热是什么病| 薄如蝉翼是什么意思| 狗篮子什么意思| 功能性消化不良是什么意思| 什么是好人| 甲醛是什么东西| apl医学上是什么意思| 孕妇缺维生素D对胎儿有什么影响| 梦见滑雪是什么意思| 耄耋之年是什么意思| 猩红热是什么症状| 耳朵痒是什么原因引起的| 男性裆部瘙痒用什么药好| 大便拉水是什么原因| 检查艾滋病挂什么科| 茅庐是什么意思| 期货平仓是什么意思| 招财猫鱼吃什么| 4月23日是什么星座| 劳模是什么意思| 罗红霉素和红霉素有什么区别| 乳腺囊性增生是什么意思| 为什么会心肌梗死| 什么食物补钙| 肌肤甲错是什么意思| 玫琳凯属于什么档次| 什么什么不动| r13是什么牌子| 凛冽是什么意思| 付诸东流是什么意思| 口腔溃疡牙龈肿痛吃什么药| clara是什么意思| 什么奶粉跟母乳一个味| 故人什么意思| 入睡难一般是什么原因造成的| 血脂高吃什么药最好| 向内求什么意思| eps是什么意思| 风云际会的意思是什么| 用黄瓜敷脸有什么功效| 支教回来后有什么待遇| 海参吃了有什么好处| 血栓是什么| 怀孕吃什么水果比较好| 腘窝囊肿挂什么科| 一个黑一个出读什么| 初中毕业可以考什么证| 桑葚有什么功效和作用| 猴头菇和什么煲汤最好| 水苏糖是什么东西| 月经来了不能吃什么东西| 女人吃藕有什么好处| 梦见死人是什么预兆| 13岁属什么生肖| 黄鼠狼是什么科| 夏天煲什么汤| 结梁子什么意思| qs排名是什么意思| 12月5号是什么星座| 吃什么对牙齿好| 鬓角长痘痘是什么原因| 人怕冷是什么原因| 无氧运动是什么| 麦克白夫人什么意思| 肠易激综合征是什么病| 尿酸高吃什么水果好| 硫黄是什么| 为什么拉稀| 血小板高是什么引起的| 总胆固醇高是什么原因| 总胆固醇高吃什么药| 什么情况需要打狂犬疫苗| 月经前便秘是什么原因| 拉黑色的屎是什么原因| 疖肿是什么样子的图片| 什么颜色属水| 韭菜可以炒什么| 人活着意义是什么| 香干是什么| 宠溺是什么意思| 牛肉烧什么菜最好吃| 芬太尼是什么药| 肝不好挂什么科| 什么然而止| 肺部疼痛什么原因| 什么防晒霜效果最好| 五十是什么之年| 红斑狼疮复发的症状是什么| 绝对值是什么意思| 真实的印度是什么样的| 什么是地中海饮食| 独角兽是什么意思| 脾胃有火是什么症状| 三叉神经痛吃什么药效果最好| 言尽于此是什么意思| 情难自禁是什么意思| 十二生肖里为什么没有猫| 媚骨是什么意思| 红肉是指什么肉| 肛塞是什么| 猴子偷桃是什么生肖| 南昌有什么好吃的| 霸王硬上弓是什么意思| 玫瑰糠疹什么原因引起的| 胃恶心想吐吃什么药| 为什么你| phonics是什么意思| 毕业典礼送什么花| 半夜醒是什么原因| 洛阳有什么好吃的| 爱长闭口用什么护肤品| 自由行是什么意思| 男鸡配什么属相最好| 返场是什么意思| 腊月初七是什么星座| 胸部ct可以检查出什么| 阳春白雪是什么意思| 杏不能和什么一起吃| 锐减是什么意思| 含量是什么意思| 小排畸主要查什么| 什么药吃了会产生幻觉| 粽叶是什么植物| 爻卦是什么意思| 甲泼尼龙主要治什么| 亮油什么时候涂| 易激惹是什么意思| 仲夏是什么时候| 大麦是什么粮食| bonnie是什么意思| 北戴河在什么地方| 染色体是什么意思| 女性私下有苦味主要是什么原因| 粉玫瑰代表什么| 字是什么结构| 平动是什么意思| 欲言又止的欲什么意思| 额头上有痣代表什么| 吃什么容易便秘| 提辖相当于现在什么官| 牙痛用什么药止痛快| 吃茄子对身体有什么好处| 太平洋中间是什么| 开业需要准备什么东西| 3月27日是什么星座| 放风是什么意思| 感冒发烧可以吃什么水果| 英姿的动物是什么生肖| 天麻起什么作用| scc是什么检查项目| 达菲是什么药| 棠字五行属什么| 个人送保是什么意思| pic什么意思| 马中赤兔人中吕布什么意思| 抬举征阳性是什么意思| 儿童弱视是什么原因引起的| 急性咽喉炎吃什么药好得快| 什么网站可以看毛片| miko是什么意思| 电视为什么打不开| 养字五行属什么| 爱什么稀罕| 216是什么意思| 脑白质脱髓鞘是什么意思| 早晨起来口苦是什么原因| 港股通是什么| 西边五行属什么| 火字旁的有什么字| 散瞳后需要注意什么| 黄瓜籽粉有什么功效| 荷花是什么季节| 百度Jump to content

CBA总决赛G1五佳球 阿联战斧暴扣周琦隔人灌篮;

From Wikipedia, the free encyclopedia
百度 综合分析国际国内形势和我国发展条件,从二○二○年到本世纪中叶可以分两个阶段来安排。

Earth's gravity measured by NASA GRACE mission, showing deviations from the theoretical gravity of an idealized, smooth Earth, the so-called Earth ellipsoid. Red shows the areas where gravity is stronger than the smooth, standard value, and blue reveals areas where gravity is weaker.[1]

The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation).[2][3] It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .

In SI units, this acceleration is expressed in metres per second squared (in symbols, m/s2 or m·s?2) or equivalently in newtons per kilogram (N/kg or N·kg?1). Near Earth's surface, the acceleration due to gravity, accurate to 2 significant figures, is 9.8 m/s2 (32 ft/s2). This means that, ignoring the effects of air resistance, the speed of an object falling freely will increase by about 9.8 metres per second (32 ft/s) every second.

The precise strength of Earth's gravity varies with location. The agreed-upon value for standard gravity is 9.80665 m/s2 (32.1740 ft/s2) by definition.[4] This quantity is denoted variously as gn, ge (though this sometimes means the normal gravity at the equator, 9.7803267715 m/s2 (32.087686258 ft/s2)),[5] g0, or simply g (which is also used for the variable local value).

The weight of an object on Earth's surface is the downwards force on that object, given by Newton's second law of motion, or F = m a (force = mass × acceleration). Gravitational acceleration contributes to the total gravity acceleration, but other factors, such as the rotation of Earth, also contribute, and, therefore, affect the weight of the object. Gravity does not normally include the gravitational pull of the Moon and Sun, which are accounted for in terms of tidal effects.

Variation in magnitude

[edit]

A non-rotating perfect sphere of uniform mass density, or whose density varies solely with distance from the centre (spherical symmetry), would produce a gravitational field of uniform magnitude at all points on its surface. The Earth is rotating and is also not spherically symmetric; rather, it is slightly flatter at the poles while bulging at the Equator: an oblate spheroid. There are consequently slight deviations in the magnitude of gravity across its surface.

Gravity on the Earth's surface varies by around 0.7%, from 9.7639 m/s2 on the Nevado Huascarán mountain in Peru to 9.8337 m/s2 at the surface of the Arctic Ocean.[6] In large cities, it ranges from 9.7806 m/s2 [7] in Kuala Lumpur, Mexico City, and Singapore to 9.825 m/s2 in Oslo and Helsinki.

Conventional value

[edit]

In 1901, the third General Conference on Weights and Measures defined a standard gravitational acceleration for the surface of the Earth: gn = 9.80665 m/s2. It was based on measurements at the Pavillon de Breteuil near Paris in 1888, with a theoretical correction applied in order to convert to a latitude of 45° at sea level.[8] This definition is thus not a value of any particular place or carefully worked out average, but an agreement for a value to use if a better actual local value is not known or not important.[9] It is also used to define the units kilogram force and pound force.

Latitude

[edit]
The differences of Earth's gravity around the Antarctic continent.

The surface of the Earth is rotating, so it is not an inertial frame of reference. At latitudes nearer the Equator, the outward centrifugal force produced by Earth's rotation is larger than at polar latitudes. This counteracts the Earth's gravity to a small degree – up to a maximum of 0.3% at the Equator – and reduces the apparent downward acceleration of falling objects.

The second major reason for the difference in gravity at different latitudes is that the Earth's equatorial bulge (itself also caused by centrifugal force from rotation) causes objects at the Equator to be further from the planet's center than objects at the poles. The force due to gravitational attraction between two masses (a piece of the Earth and the object being weighed) varies inversely with the square of the distance between them. The distribution of mass is also different below someone on the equator and below someone at a pole. The net result is that an object at the Equator experiences a weaker gravitational pull than an object on one of the poles.

In combination, the equatorial bulge and the effects of the surface centrifugal force due to rotation mean that sea-level gravity increases from about 9.780 m/s2 at the Equator to about 9.832 m/s2 at the poles, so an object will weigh approximately 0.5% more at the poles than at the Equator.[2][10]

Altitude

[edit]
The gravity of a body is inversely proportional to the distance form that body. This graph displays this relation as the distance changes from the surface (0 km) to 30000 km.
Earth's gravity vs. distance from it, from the surface to 30000 km
Earth vs Mars vs Moon gravity at elevation

Gravity decreases with altitude as one rises above the Earth's surface because greater altitude means greater distance from the Earth's centre. All other things being equal, an increase in altitude from sea level to 9,000 metres (30,000 ft) causes a weight decrease of about 0.29%. An additional factor affecting apparent weight is the decrease in air density at altitude, which lessens an object's buoyancy.[11] This would increase a person's apparent weight at an altitude of 9,000 metres by about 0.08%.

It is a common misconception that astronauts in orbit are weightless because they have flown high enough to escape the Earth's gravity. In fact, at an altitude of 400 kilometres (250 mi), equivalent to a typical orbit of the ISS, gravity is still nearly 90% as strong as at the Earth's surface. Weightlessness actually occurs because orbiting objects are in free-fall.[12]

The effect of ground elevation depends on the density of the ground (see Local geology). A person flying at 9,100 m (30,000 ft) above sea level over mountains will feel more gravity than someone at the same elevation but over the sea. However, a person standing on the Earth's surface feels less gravity when the elevation is higher.

The following formula approximates the Earth's gravity variation with altitude:

Calculator
Re 6,371.00877 km
g0 9.80665 m/s2
h 0 km
gh 9.80665 m/s2

where

The formula treats the Earth as a perfect sphere with a radially symmetric distribution of mass; a more accurate mathematical treatment is discussed below.

Depth

[edit]
Gravity at different internal layers of Earth (1 = continental crust, 2 = oceanic crust, 3 = upper mantle, 4 = lower mantle, 5+6 = core, A = crust-mantle boundary)
Earth's radial density distribution according to the Preliminary Reference Earth Model (PREM).[13]
Earth's gravity according to the Preliminary Reference Earth Model (PREM).[13] Two models for a spherically symmetric Earth are included for comparison. The dark green straight line is for a constant density equal to the Earth's average density. The light green curved line is for a density that decreases linearly from center to surface. The density at the center is the same as in the PREM, but the surface density is chosen so that the mass of the sphere equals the mass of the real Earth.

An approximate value for gravity at a distance r from the center of the Earth can be obtained by assuming that the Earth's density is spherically symmetric. The force of gravity at a radius r depends only on the mass inside the sphere of that radius. All the contributions from outside cancel out as a consequence of the inverse-square law of gravitation. Another consequence is that the gravity is the same as if all the mass were concentrated at the center. Thus, the gravitational acceleration at this radius is[14]

where G is the gravitational constant and M(r) is the total mass enclosed within radius r. This result is known as the Shell theorem; it took Isaac Newton 20 years to prove this result, delaying his work on gravity.[15]:?13?

If the Earth had a constant density ρ, the mass would be M(r) = (4/3)πρr3 and the dependence of gravity on depth would be

The gravity g′ at depth d is given by g′ = g(1 ? d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ0 at the center to ρ1 at the surface, then ρ(r) = ρ0 ? (ρ0 ? ρ1) r / R, and the dependence would be

The actual depth dependence of density and gravity, inferred from seismic travel times (see Adams–Williamson equation), is shown in the graphs below.

Local topography and geology

[edit]

Local differences in topography (such as the presence of mountains), geology (such as the density of rocks in the vicinity), and deeper tectonic structure cause local and regional differences in the Earth's gravitational field, known as gravity anomalies.[16] Some of these anomalies can be very extensive, resulting in bulges in sea level, and throwing pendulum clocks out of synchronisation.

The study of these anomalies forms the basis of gravitational geophysics. The fluctuations are measured with highly sensitive gravimeters, the effect of topography and other known factors is subtracted, and from the resulting data conclusions are drawn. Such techniques are now used by prospectors to find oil and mineral deposits. Denser rocks (often containing mineral ores) cause higher than normal local gravitational fields on the Earth's surface. Less dense sedimentary rocks cause the opposite.

A map of recent volcanic activity and ridge spreading. The areas where NASA GRACE measured gravity to be stronger than the theoretical gravity have a strong correlation with the positions of the volcanic activity and ridge spreading.

There is a strong correlation between the gravity derivation map of earth from NASA GRACE with positions of recent volcanic activity, ridge spreading and volcanos: these regions have a stronger gravitation than theoretical predictions.

Other factors

[edit]

In air or water, objects experience a supporting buoyancy force which reduces the apparent strength of gravity (as measured by an object's weight). The magnitude of the effect depends on the air density (and hence air pressure) or the water density respectively; see Apparent weight for details.

The gravitational effects of the Moon and the Sun (also the cause of the tides) have a very small effect on the apparent strength of Earth's gravity, depending on their relative positions; typical variations are 2 μm/s2 (0.2 mGal) over the course of a day.

Direction

[edit]
A plumb bob determines the local vertical direction

Gravity acceleration is a vector quantity, with direction in addition to magnitude. In a spherically symmetric Earth, gravity would point directly towards the sphere's centre. As the Earth's figure is slightly flatter, there are consequently significant deviations in the direction of gravity: essentially the difference between geodetic latitude and geocentric latitude. Smaller deviations, called vertical deflection, are caused by local mass anomalies, such as mountains.

Comparative values worldwide

[edit]

Tools exist for calculating the strength of gravity at various cities around the world.[17] The effect of latitude can be clearly seen with gravity in high-latitude cities: Anchorage (9.826 m/s2), Helsinki (9.825 m/s2), being about 0.5% greater than that in cities near the equator: Kuala Lumpur (9.776 m/s2). The effect of altitude can be seen in Mexico City (9.776 m/s2; altitude 2,240 metres (7,350 ft)), and by comparing Denver (9.798 m/s2; 1,616 metres (5,302 ft)) with Washington, D.C. (9.801 m/s2; 30 metres (98 ft)), both of which are near 39° N. Measured values can be obtained from Physical and Mathematical Tables by T.M. Yarwood and F. Castle, Macmillan, revised edition 1970.[18]

Acceleration due to gravity in various cities
Location m/s2 ft/s2 Location m/s2 ft/s2 Location m/s2 ft/s2 Location m/s2 ft/s2
Anchorage 9.826 32.24 Helsinki 9.825 32.23 Oslo 9.825 32.23 Copenhagen 9.821 32.22
Stockholm 9.818 32.21 Manchester 9.818 32.21 Amsterdam 9.817 32.21 Kotagiri 9.817 32.21
Birmingham 9.817 32.21 London 9.816 32.20 Brussels 9.815 32.20 Frankfurt 9.814 32.20
Seattle 9.811 32.19 Paris 9.809 32.18 Montréal 9.809 32.18 Vancouver 9.809 32.18
Istanbul 9.808 32.18 Toronto 9.807 32.18 Zurich 9.807 32.18 Ottawa 9.806 32.17
Skopje 9.804 32.17 Chicago 9.804 32.17 Rome 9.803 32.16 Wellington 9.803 32.16
New York City 9.802 32.16 Lisbon 9.801 32.16 Washington, D.C. 9.801 32.16 Athens 9.800 32.15
Madrid 9.800 32.15 Melbourne 9.800 32.15 Auckland 9.799 32.15 Denver 9.798 32.15
Tokyo 9.798 32.15 Buenos Aires 9.797 32.14 Sydney 9.797 32.14 Nicosia 9.797 32.14
Los Angeles 9.796 32.14 Cape Town 9.796 32.14 Perth 9.794 32.13 Kuwait City 9.792 32.13
Taipei 9.790 32.12 Rio de Janeiro 9.788 32.11 Havana 9.786 32.11 Kolkata 9.785 32.10
Hong Kong 9.785 32.10 Bangkok 9.780 32.09 Manila 9.780 32.09 Jakarta 9.777 32.08
Kuala Lumpur 9.776 32.07 Singapore 9.776 32.07 Mexico City 9.776 32.07 Kandy 9.775 32.07

Mathematical models

[edit]

If the terrain is at sea level, we can estimate, for the Geodetic Reference System 1980, , the acceleration at latitude :

This is the International Gravity Formula 1967, the 1967 Geodetic Reference System Formula, Helmert's equation or Clairaut's formula.[19]

An alternative formula for g as a function of latitude is the WGS (World Geodetic System) 84 Ellipsoidal Gravity Formula:[20]

where

  • are the equatorial and polar semi-axes, respectively;
  • is the spheroid's eccentricity, squared;
  • is the defined gravity at the equator and poles, respectively;
  • (formula constant);

then, where ,[20]

where the semi-axes of the earth are:

The difference between the WGS-84 formula and Helmert's equation is less than 0.68 μm·s?2.

Further reductions are applied to obtain gravity anomalies (see: Gravity anomaly#Computation).

Estimating g from the law of universal gravitation

[edit]

From the law of universal gravitation, the force on a body acted upon by Earth's gravitational force is given by

where r is the distance between the centre of the Earth and the body (see below), and here we take to be the mass of the Earth and m to be the mass of the body.

Additionally, Newton's second law, F = ma, where m is mass and a is acceleration, here tells us that

Comparing the two formulas it is seen that:

So, to find the acceleration due to gravity at sea level, substitute the values of the gravitational constant, G, the Earth's mass (in kilograms), m1, and the Earth's radius (in metres), r, to obtain the value of g:[21]

This formula only works because of the mathematical fact that the gravity of a uniform spherical body, as measured on or above its surface, is the same as if all its mass were concentrated at a point at its centre. This is what allows us to use the Earth's radius for r.

The value obtained agrees approximately with the measured value of g. The difference may be attributed to several factors, mentioned above under "Variation in magnitude":

  • The Earth is not homogeneous
  • The Earth is not a perfect sphere, and an average value must be used for its radius
  • This calculated value of g only includes true gravity. It does not include the reduction of constraint force that we perceive as a reduction of gravity due to the rotation of Earth, and some of gravity being counteracted by centrifugal force.

There are significant uncertainties in the values of r and m1 as used in this calculation, and the value of G is also rather difficult to measure precisely.

If G, g and r are known then a reverse calculation will give an estimate of the mass of the Earth. This method was used by Henry Cavendish.

Measurement

[edit]

The measurement of Earth's gravity is called gravimetry.

Satellite measurements

[edit]
Gravity anomaly map from GRACE

Currently, the static and time-variable Earth's gravity field parameters are determined using modern satellite missions, such as GOCE, CHAMP, Swarm, GRACE and GRACE-FO.[22][23] The lowest-degree parameters, including the Earth's oblateness and geocenter motion are best determined from satellite laser ranging.[24]

Large-scale gravity anomalies can be detected from space, as a by-product of satellite gravity missions, e.g., GOCE. These satellite missions aim at the recovery of a detailed gravity field model of the Earth, typically presented in the form of a spherical-harmonic expansion of the Earth's gravitational potential, but alternative presentations, such as maps of geoid undulations or gravity anomalies, are also produced.

The Gravity Recovery and Climate Experiment (GRACE) consisted of two satellites that detected gravitational changes across the Earth. Also these changes could be presented as gravity anomaly temporal variations. The Gravity Recovery and Interior Laboratory (GRAIL) also consisted of two spacecraft orbiting the Moon, which orbited for three years before their deorbit in 2015.

See also

[edit]

References

[edit]
  1. ^ NASA/JPL/University of Texas Center for Space Research. "PIA12146: GRACE Global Gravity Animation". Photojournal. NASA Jet Propulsion Laboratory. Retrieved 30 December 2013.
  2. ^ a b Boynton, Richard (2001). "Precise Measurement of Mass" (PDF). Sawe Paper No. 3147. Arlington, Texas: S.A.W.E., Inc. Archived from the original (PDF) on 27 February 2007. Retrieved 22 December 2023.
  3. ^ Hofmann-Wellenhof, B.; Moritz, H. (2006). Physical Geodesy (2nd ed.). Springer. ISBN 978-3-211-33544-4. § 2.1: "The total force acting on a body at rest on the earth's surface is the resultant of gravitational force and the centrifugal force of the earth's rotation and is called gravity."
  4. ^ Bureau International des Poids et Mesures (1901). "Déclaration relative à l'unité de masse et à la définition du poids; valeur conventionnelle de gn". Comptes Rendus des Séances de la Troisième Conférence· Générale des Poids et Mesures (in French). Paris: Gauthier-Villars. p. 68. Le nombre adopté dans le Service international des Poids et Mesures pour la valeur de l'accélération normale de la pesanteur est 980,665 cm/sec2, nombre sanctionné déjà par quelques législations. Déclaration relative à l'unité de masse et à la définition du poids; valeur conventionnelle de gn.
  5. ^ Moritz, Helmut (2000). "Geodetic Reference System 1980". Journal of Geodesy. 74 (1): 128–133. doi:10.1007/s001900050278. S2CID 195290884. Retrieved 2025-08-04. γe = 9.780 326 7715 m/s2 normal gravity at equator
  6. ^ Hirt, Christian; Claessens, Sten; Fecher, Thomas; Kuhn, Michael; Pail, Roland; Rexer, Moritz (August 28, 2013). "New ultrahigh-resolution picture of Earth's gravity field". Geophysical Research Letters. 40 (16): 4279–4283. Bibcode:2013GeoRL..40.4279H. doi:10.1002/grl.50838. hdl:20.500.11937/46786. S2CID 54867946.
  7. ^ "Wolfram|Alpha Gravity in Kuala Lumpur", Wolfram Alpha, accessed November 2020
  8. ^ Terry Quinn (2011). From Artefacts to Atoms: The BIPM and the Search for Ultimate Measurement Standards. Oxford University Press. p. 127. ISBN 978-0-19-530786-3.
  9. ^ Resolution of the 3rd CGPM (1901), page 70 (in cm/s2). BIPM – Resolution of the 3rd CGPM
  10. ^ "Curious About Astronomy?". Cornell University. Archived from the original on 28 July 2013. Retrieved 22 December 2023.
  11. ^ "I feel 'lighter' when up a mountain but am I?", National Physical Laboratory FAQ
  12. ^ "The G's in the Machine" Archived 2025-08-04 at the Wayback Machine, NASA, see "Editor's note #2"
  13. ^ a b A. M. Dziewonski, D. L. Anderson (1981). "Preliminary reference Earth model" (PDF). Physics of the Earth and Planetary Interiors. 25 (4): 297–356. Bibcode:1981PEPI...25..297D. doi:10.1016/0031-9201(81)90046-7. ISSN 0031-9201.
  14. ^ Tipler, Paul A. (1999). Physics for scientists and engineers (4th ed.). New York: W.H. Freeman/Worth Publishers. pp. 336–337. ISBN 9781572594913.
  15. ^ Weinberg, Steven (1972). Gravitation and cosmology. John Wiley & Sons. ISBN 9780471925675.
  16. ^ Watts, A. B.; Daly, S. F. (May 1981). "Long wavelength gravity and topography anomalies". Annual Review of Earth and Planetary Sciences. 9: 415–418. Bibcode:1981AREPS...9..415W. doi:10.1146/annurev.ea.09.050181.002215.
  17. ^ Gravitational Fields Widget as of Oct 25th, 2012WolframAlpha
  18. ^ T.M. Yarwood and F. Castle, Physical and Mathematical Tables, revised edition, Macmillan and Co LTD, London and Basingstoke, Printed in Great Britain by The University Press, Glasgow, 1970, pp. 22 & 23.
  19. ^ International Gravity formula Archived 2025-08-04 at the Wayback Machine
  20. ^ a b "Department of Defense World Geodetic System 1984 – Its Definition and Relationships with Local Geodetic Systems,NIMA TR8350.2, 3rd ed., Tbl. 3.4, Eq. 4-1" (PDF). Archived from the original (PDF) on 2025-08-04. Retrieved 2025-08-04.
  21. ^ "Gravitation". www.ncert.nic. Retrieved 2025-08-04.
  22. ^ Meyer, Ulrich; Sosnica, Krzysztof; Arnold, Daniel; Dahle, Christoph; Thaller, Daniela; Dach, Rolf; J?ggi, Adrian (22 April 2019). "SLR, GRACE and Swarm Gravity Field Determination and Combination". Remote Sensing. 11 (8): 956. Bibcode:2019RemS...11..956M. doi:10.3390/rs11080956. hdl:10281/240694.
  23. ^ Tapley, Byron D.; Watkins, Michael M.; Flechtner, Frank; Reigber, Christoph; Bettadpur, Srinivas; Rodell, Matthew; Sasgen, Ingo; Famiglietti, James S.; Landerer, Felix W.; Chambers, Don P.; Reager, John T.; Gardner, Alex S.; Save, Himanshu; Ivins, Erik R.; Swenson, Sean C.; Boening, Carmen; Dahle, Christoph; Wiese, David N.; Dobslaw, Henryk; Tamisiea, Mark E.; Velicogna, Isabella (May 2019). "Contributions of GRACE to understanding climate change". Nature Climate Change. 9 (5): 358–369. Bibcode:2019NatCC...9..358T. doi:10.1038/s41558-019-0456-2. PMC 6750016. PMID 31534490.
  24. ^ So?nica, Krzysztof; J?ggi, Adrian; Meyer, Ulrich; Thaller, Daniela; Beutler, Gerhard; Arnold, Daniel; Dach, Rolf (October 2015). "Time variable Earth's gravity field from SLR satellites". Journal of Geodesy. 89 (10): 945–960. Bibcode:2015JGeod..89..945S. doi:10.1007/s00190-015-0825-1.
[edit]
mri是什么检查项目 什么而什么见 玉米有什么营养 干湿分离什么意思 六块钱麻辣烫什么意思
老实人为什么总被欺负 车前草长什么样 嘴唇轻微发麻什么病兆 印度人为什么用手抓饭吃 姜子牙是什么神仙
查怀孕做什么检查 生小孩需要准备什么 肩周炎吃什么药 鸟屎掉头上有什么预兆 什么姿势最深
7月5号什么星座 sassy是什么意思 举牌是什么意思 三更是什么生肖 这是什么虫
小登科是什么意思hcv9jop3ns2r.cn 尿酸ua偏高是什么意思hcv8jop0ns3r.cn 七月七是什么节日hcv9jop3ns4r.cn 阴虱是什么样子图片hcv8jop9ns5r.cn 婴儿枕头里面装什么好hcv9jop4ns0r.cn
蔡英文是什么党派hcv8jop5ns9r.cn 肠穿孔有什么症状hcv8jop1ns4r.cn 嫑怹是什么意思hcv9jop2ns4r.cn 日光性皮炎用什么药膏最有效hcv9jop8ns0r.cn 口契是什么字hcv9jop0ns7r.cn
用什么泡脚可以脸上祛斑adwl56.com 什么是三重一大事项hcv8jop2ns8r.cn 阴道镜是检查什么的hcv8jop8ns7r.cn 一个马一个尧读什么hcv9jop7ns3r.cn 为什么男人吃石榴壮阳mmeoe.com
床上有横梁有什么害处hcv8jop3ns3r.cn 测测你天生靠什么吃饭hcv7jop5ns0r.cn 雾灯什么时候开huizhijixie.com 琅琊榜是什么意思hcv9jop3ns4r.cn 轻度抑郁有什么症状hcv9jop4ns0r.cn
百度