m倾向是什么意思| 感染四项挂什么科| 为什么会打呼| 老实的动物是什么生肖| 临床表现是什么意思| 姓陈取什么名字好听| 肩袖损伤吃什么药| 巨蟹座前面是什么星座| 虚火牙痛吃什么药效果最快| 哮喘咳嗽吃什么药好得快| 两情相悦什么意思| 水仙是什么| 指甲上白色月牙代表什么| 艾滋病有什么症状| 人为什么会失眠| 梦见别人怀孕是什么意思| 什么的大叫| 2023年是属什么生肖| 老公生日送什么礼物好最合适| 排卵期出血是什么样的| 胃食管反流咳嗽吃什么药| 日本人为什么长寿| 非洲有什么动物| 杨柳代表什么生肖| 一箭双雕是什么意思| 黄片是什么| 爷爷和孙子是什么关系| 为什么会吐| 今非昔比是什么意思| 以前没有狐臭为什么突然就有了| 3000年前是什么朝代| 8月27是什么星座| 泌尿系感染吃什么药| 震字五行属什么| 部队指导员是什么级别| 人活着到底有什么意义| 脾胃虚弱吃什么食物补| 嗓子发炎是什么原因引起的| 脊髓炎是什么病| 送同学什么毕业礼物好| rpa是什么| 夏至是什么| 秋收冬藏是什么生肖| 爱意是什么意思| 11月5日是什么星座| 男人左眼皮跳是什么预兆| 所谓是什么意思| 再生障碍性贫血是什么病| 子宫收缩是什么感觉| 小孩嗓子哑了吃什么药| 为什么要做微信营销| 冬天喝什么茶好呢| 金牛座后面是什么星座| 夏天脚开裂是什么原因| 秦朝灭亡后是什么朝代| 预后是什么意思| 便秘什么意思| 五月份是什么季节| 晚上睡觉脚抽搐是什么原因| 农历7月是什么月| 知了为什么会叫| con是什么| 羊配什么生肖最好| 龙凤呈祥的意思是什么| 四十属什么| 否是什么意思| 8月7日是什么星座| 打点是什么意思| 血压低吃什么最快最有效| 准备好了吗时刻准备着是什么歌| 咳嗽有绿痰是什么原因| 外公的妈妈叫什么| 内向是什么意思| 什么腔什么调| 葡萄上的白霜是什么| 乙肝两对半15阳性是什么意思| 一般细菌培养及鉴定是检查什么| 为什么疤痕会增生| 陈小春什么星座| 什么是素质教育| diff什么意思| 腰疼吃什么药效果好| 什么时候刮胡子最好| 为什么晚上不能吃姜| 婕字五行属什么| 印度为什么那么热| 补血吃什么药最快最好| videos是什么意思| 96属什么生肖| 长沙有什么区| 三油甘脂是什么| 快乐的反义词是什么| 做梦掉牙齿是什么预兆| 八股是什么意思| 92年是什么生肖| essence什么意思| 跳闸是什么原因| 九月一号是什么节日| 情未了什么意思| 中央组织部部长什么级别| 尿道炎症吃什么药好| 木兮是什么意思| dn是什么| 上挂是什么意思| 凌晨2点是什么时辰| 锁舌是什么| 三伏天吃什么水果好| 平躺头晕是什么原因| 青玉是什么玉| 支抗钉是什么| 胃炎能吃什么| 雷诺综合征是什么病| 膝盖酸软是什么原因| 月经老是推后是什么原因| 木元念什么| 甲类传染病指什么| 清创是什么意思| 眼睛肿痛什么原因| 什么是子宫内膜异位症| 艾滋病挂什么科| 圆寂是什么意思| 宫腔线分离是什么意思| 左肺下叶纤维灶是什么意思| 猫鼻支什么症状| 什么是坚果| sk是什么意思| 乖巧是什么意思| 嘴角有痣代表什么| 为什么夏天吃姜好| 80年属什么| 露酒是什么意思| 早醒是什么原因| 什么是丝状疣| 心绞痛吃什么药| 贫血是什么原因导致的| 眼睛干涩模糊用什么药| 嘴巴很臭是什么原因引起的| 什么油最健康| 学士学位证书有什么用| 什么叫化疗| 硫酸镁是什么| 子宫内膜什么时候脱落| torch是什么意思| 王火火念什么| 推荐是什么意思| 上颌窦炎吃什么药| 载体是什么意思| 每天吃一根黄瓜有什么好处| 金针菇为什么叫明天见| 强直性脊柱炎看什么科| 嗓子不舒服吃什么消炎药| 非甾体是什么意思| vinegar是什么意思| 什么都不放的冬瓜清汤| 什么美白效果最好最快| 什么是性冷淡| 头发长得快是什么原因| 女攻男受是什么意思| 什么叫血糖| 双鱼配什么星座| 恒心是什么意思| 喜什么自什么| 感觉心慌是什么原因| 为什么会呼吸性碱中毒| tnt是什么| 阿司匹林肠溶片什么时候吃| 为什么会得干眼症| 谷丙转氨酶偏低是什么意思| o是什么牌子| 庞统和诸葛亮什么关系| 舌苔发黄是什么原因引起的| 扁桃体切除有什么坏处| 稀字五行属什么| 语重心长是什么意思| 劳作是什么意思| 脖子黑是什么病| 坐地能吸土是什么意思| 梦见蛇蛋是什么意思啊| 体内火气大吃什么降火| 开窍是什么意思| 幻和是什么意思| 什么是肠漏| oz是什么意思| 夜尿多是什么原因引起的| 采阴补阳是什么意思| 6月22什么星座| 女人吃莲藕有什么好处| 国粹是什么| 六月二十五号是什么星座| 1RM什么意思| 毛主席为什么不进故宫| 小的五行属什么| 孔子的原名叫什么| 98年是什么年| 卫生湿巾是干什么用的| 什么是树脂材料| 胸腔疼挂什么科| 脾大对身体有什么影响| 难道是什么意思| 五月21号是什么星座| 巳蛇五行属什么| 黑猫警长叫什么名字| 不典型增生是什么意思| 筷子什么材质最好| 五朵金花是什么意思| 单侧流鼻血是什么原因| 吃什么增强记忆力| 喝完酒头疼是什么原因| 鱼靠什么呼吸| 六度万行 是什么意思| 早上起来不晨勃是什么原因| 吃什么排湿气最好最快| 女人喝什么调节内分泌| 一个月一个泉是什么字| 什么是遗憾| 腋窝淋巴结肿大挂什么科| 带下病是什么病| 胃底腺息肉什么意思| 卵巢筛查要做什么检查| 手机为什么会发热| 脚后跟疼为什么| 什么生肖怕老婆| 指南针什么时候发明的| 乳腺是什么科| 无为什么意思| 行李是什么意思| 大脑供血不足头晕吃什么药最好| 赢荡为什么传位嬴稷| 头总出汗是什么原因| 宝宝不吃奶是什么原因| 安全感是什么意思| 澳门什么时候回归祖国| 叉烧是什么肉做的| 芦芽是什么| 阴道红肿是什么原因| 什么可以吃| 舌头发涩是什么原因造成的| 阳历一月份是什么星座| 鬼长什么样子| 圣经是什么时候写的| 消化不良反酸吃什么药| 胰腺炎为什么喝水就死| 迅速的反义词是什么| mica是什么意思| 黄皮果是什么水果| 梦见花开是什么预兆| btc是什么意思| 鸡是什么类| hpv是什么病毒| o和b型生的孩子是什么血型| 软件开发需要学什么| 小揪揪什么意思| 香菜不能和什么一起吃| nk细胞是什么| 一个小时尿一次是什么原因| 头皮痒挂什么科| 不加大念什么| 泄身是什么意思| hr是什么意思| 籍贯写什么| 甲功三项能查出什么病| 头爱出汗是什么原因引起的| 玩是什么意思| afar是什么意思| 百度Jump to content

防治污染 共迎挑战(美丽中国·和谐共生)

From Wikipedia, the free encyclopedia
One way of mapping terrestrial biomes around the world (doesn't include the Antarctic Tundra)
百度     从短期来看,个税递延型养老保险的实施的确可能降低政府财政收入,但实施这项公共政策,将使未来商业养老保险市场迎来重大发展机遇,保险公司上缴的营业税和所得税也必然大幅增长,财政收入完全可以“失之东隅,收之桑榆”。

A biome (/?ba?.o?m/) is a distinct geographical region with specific climate, vegetation, and animal life. It consists of a biological community that has formed in response to its physical environment and regional climate.[1] In 1935, Tansley added the climatic and soil aspects to the idea, calling it ecosystem.[2][3] The International Biological Program (1964–74) projects popularized the concept of biome.[4]

However, in some contexts, the term biome is used in a different manner. In German literature, particularly in the Walter terminology, the term is used similarly as biotope (a concrete geographical unit), while the biome definition used in this article is used as an international, non-regional, terminology—irrespectively of the continent in which an area is present, it takes the same biome name—and corresponds to his "zonobiome", "orobiome" and "pedobiome" (biomes determined by climate zone, altitude or soil).[5]

In the Brazilian literature, the term biome is sometimes used as a synonym of biogeographic province, an area based on species composition (the term floristic province being used when plant species are considered), or also as synonym of the "morphoclimatic and phytogeographical domain" of Ab'Sáber, a geographic space with subcontinental dimensions, with the predominance of similar geomorphologic and climatic characteristics, and of a certain vegetation form. Both include many biomes in fact.[6][7][8]

Classifications

[edit]

To divide the world into a few ecological zones is difficult, notably because of the small-scale variations that exist everywhere on earth and because of the gradual changeover from one biome to the other. Their boundaries must therefore be drawn arbitrarily and their characterization made according to the average conditions that predominate in them.[9]

A 1978 study on North American grasslands[10] found a positive logistic correlation between evapotranspiration in mm/yr and above-ground net primary production in g/m2/yr. The general results from the study were that precipitation and water use led to above-ground primary production, while solar irradiation and temperature lead to below-ground primary production (roots), and temperature and water lead to cool and warm season growth habit.[11] These findings help explain the categories used in Holdridge's bioclassification scheme (see below), which were then later simplified by Whittaker. The number of classification schemes and the variety of determinants used in those schemes, however, should be taken as strong indicators that biomes do not fit perfectly into the classification schemes created.

Holdridge (1947, 1964) life zones

[edit]
Holdridge life zone classification scheme. Although conceived as three-dimensional by its originator, it is usually shown as a two-dimensional array of hexagons in a triangular frame.

In 1947, the American botanist and climatologist Leslie Holdridge classified climates based on the biological effects of temperature and rainfall on vegetation under the assumption that these two abiotic factors are the largest determinants of the types of vegetation found in a habitat. Holdridge uses the four axes to define 30 so-called "humidity provinces", which are clearly visible in his diagram. While this scheme largely ignores soil and sun exposure, Holdridge acknowledged that these were important.

Allee (1949) biome-types

[edit]

The principal biome-types by Allee (1949):[12]

Kendeigh (1961) biomes

[edit]

The principal biomes of the world by Kendeigh (1961):[13]

Whittaker (1962, 1970, 1975) biome-types

[edit]
The distribution of vegetation types as a function of mean annual temperature and precipitation.

Whittaker classified biomes using two abiotic factors: precipitation and temperature. His scheme can be seen as a simplification of Holdridge's; more readily accessible, but missing Holdridge's greater specificity.

Whittaker based his approach on theoretical assertions and empirical sampling. He had previously compiled a review of biome classifications.[14]

Key definitions for understanding Whittaker's scheme

[edit]
  • Physiognomy: sometimes referring to the plants' appearance; or the biome's apparent characteristics, outward features, or appearance of ecological communities or species – including plants.
  • Biome: a grouping of terrestrial ecosystems on a given continent that is similar in vegetation structure, physiognomy, features of the environment and characteristics of their animal communities.
  • Formation: a major kind of community of plants on a given continent.
  • Biome-type: grouping of convergent biomes or formations of different continents, defined by physiognomy.
  • Formation-type: a grouping of convergent formations.

Whittaker's distinction between biome and formation can be simplified: formation is used when applied to plant communities only, while biome is used when concerned with both plants and animals. Whittaker's convention of biome-type or formation-type is a broader method to categorize similar communities.[15]

Whittaker's parameters for classifying biome-types

[edit]

Whittaker used what he called "gradient analysis" of ecocline patterns to relate communities to climate on a worldwide scale. Whittaker considered four main ecoclines in the terrestrial realm.[15]

  1. Intertidal levels: The wetness gradient of areas that are exposed to alternating water and dryness with intensities that vary by location from high to low tide
  2. Climatic moisture gradient
  3. Temperature gradient by altitude
  4. Temperature gradient by latitude

Along these gradients, Whittaker noted several trends that allowed him to qualitatively establish biome-types:

  • The gradient runs from favorable to the extreme, with corresponding changes in productivity.
  • Changes in physiognomic complexity vary with how favorable of an environment exists (decreasing community structure and reduction of stratal differentiation as the environment becomes less favorable).
  • Trends in the diversity of structure follow trends in species diversity; alpha and beta species diversities decrease from favorable to extreme environments.
  • Each growth-form (i.e. grasses, shrubs, etc.) has its characteristic place of maximum importance along the ecoclines.
  • The same growth forms may be dominant in similar environments in widely different parts of the world.

Whittaker summed the effects of gradients (3) and (4) to get an overall temperature gradient and combined this with a gradient (2), the moisture gradient, to express the above conclusions in what is known as the Whittaker classification scheme. The scheme graphs average annual precipitation (x-axis) versus average annual temperature (y-axis) to classify biome-types.

Biome-types

[edit]

Goodall (1974–) ecosystem types

[edit]

The multi-authored series Ecosystems of the World, edited by David W. Goodall, provides a comprehensive coverage of the major "ecosystem types or biomes" on Earth:[17]

  1. Terrestrial Ecosystems
    1. Natural Terrestrial Ecosystems
      1. Wet Coastal Ecosystems
      2. Dry Coastal Ecosystems
      3. Polar and Alpine Tundra
      4. Mires: Swamp, Bog, Fen, and Moor
      5. Temperate Deserts and Semi-Deserts
      6. Coniferous Forests
      7. Temperate Deciduous Forests
      8. Natural Grasslands
      9. Heathlands and Related Shrublands
      10. Temperate Broad-Leaved Evergreen Forests
      11. Mediterranean-Type Shrublands
      12. Hot Deserts and Arid Shrublands
      13. Tropical Savannas
      14. Tropical Rain Forest Ecosystems
      15. Wetland Forests
      16. Ecosystems of Disturbed Ground
    2. Managed Terrestrial Ecosystems
      1. Managed Grasslands
      2. Field Crop Ecosystems
      3. Tree Crop Ecosystems
      4. Greenhouse Ecosystems
      5. Bioindustrial Ecosystems
  2. Aquatic Ecosystems
    1. Inland Aquatic Ecosystems
      1. River and Stream Ecosystems
      2. Lakes and Reservoirs
    2. Marine Ecosystems
      1. Intertidal and Littoral Ecosystems
      2. Coral Reefs
      3. Estuaries and Enclosed Seas
      4. Ecosystems of the Continental Shelves
      5. Ecosystems of the Deep Ocean
    3. Managed Aquatic Ecosystems
      1. Managed Aquatic Ecosystems
  3. Underground Ecosystems
    1. Cave Ecosystems

Walter (1976, 2002) zonobiomes

[edit]

The eponymously named Heinrich Walter classification scheme considers the seasonality of temperature and precipitation. The system, also assessing precipitation and temperature, finds nine major biome types, with the important climate traits and vegetation types. The boundaries of each biome correlate to the conditions of moisture and cold stress that are strong determinants of plant form, and therefore the vegetation that defines the region. Extreme conditions, such as flooding in a swamp, can create different kinds of communities within the same biome.[5][18][19]

Number Zonobiome Zonal soil type Zonal vegetation type
ZB I Equatorial, always moist, little temperature seasonality Equatorial brown clays Evergreen tropical rainforest
ZB II Tropical, summer rainy season and cooler "winter" dry season Red clays or red earths Tropical seasonal forest, seasonal dry forest, scrub, or savanna
ZB III Subtropical, highly seasonal, arid climate Serosemes, sierozemes Desert vegetation with considerable exposed surface
ZB IV Mediterranean, winter rainy season and summer drought Mediterranean brown earths Sclerophyllous (drought-adapted), frost-sensitive shrublands and woodlands
ZB V Warm temperate, occasional frost, often with summer rainfall maximum Yellow or red forest soils, slightly podsolic soils Temperate evergreen forest, somewhat frost-sensitive
ZB VI Nemoral, moderate climate with winter freezing Forest brown earths and grey forest soils Frost-resistant, deciduous, temperate forest
ZB VII Continental, arid, with warm or hot summers and cold winters Chernozems to serozems Grasslands and temperate deserts
ZB VIII Boreal, cold temperate with cool summers and long winters Podsols Evergreen, frost-hardy, needle-leaved forest (taiga)
ZB IX Polar, short, cool summers and long, cold winters Tundra humus soils with solifluction (permafrost soils) Low, evergreen vegetation, without trees, growing over permanently frozen soils

Schultz (1988) eco-zones

[edit]

Schultz (1988, 2005) defined nine ecozones (his concept of ecozone is more similar to the concept of biome than to the concept of ecozone of BBC):[20]

  1. polar/subpolar zone
  2. boreal zone
  3. humid mid-latitudes
  4. dry mid-latitudes
  5. subtropics with winter rain
  6. subtropics with year-round rain
  7. dry tropics and subtropics
  8. tropics with summer rain
  9. tropics with year-round rain

Bailey (1989) ecoregions

[edit]

Robert G. Bailey nearly developed a biogeographical classification system of ecoregions for the United States in a map published in 1976. He subsequently expanded the system to include the rest of North America in 1981, and the world in 1989. The Bailey system, based on climate, is divided into four domains (polar, humid temperate, dry, and humid tropical), with further divisions based on other climate characteristics (subarctic, warm temperate, hot temperate, and subtropical; marine and continental; lowland and mountain).[21][22]

  • 100 Polar Domain
    • 120 Tundra Division (K?ppen: Ft)
    • M120 Tundra Division – Mountain Provinces
    • 130 Subarctic Division (K?ppen: E)
    • M130 Subarctic Division – Mountain Provinces
  • 200 Humid Temperate Domain
    • 210 Warm Continental Division (K?ppen: portion of Dcb)
    • M210 Warm Continental Division – Mountain Provinces
    • 220 Hot Continental Division (K?ppen: portion of Dca)
    • M220 Hot Continental Division – Mountain Provinces
    • 230 Subtropical Division (K?ppen: portion of Cf)
    • M230 Subtropical Division – Mountain Provinces
    • 240 Marine Division (K?ppen: Do)
    • M240 Marine Division – Mountain Provinces
    • 250 Prairie Division (K?ppen: arid portions of Cf, Dca, Dcb)
    • 260 Mediterranean Division (K?ppen: Cs)
    • M260 Mediterranean Division – Mountain Provinces
  • 300 Dry Domain
    • 310 Tropical/Subtropical Steppe Division
    • M310 Tropical/Subtropical Steppe Division – Mountain Provinces
    • 320 Tropical/Subtropical Desert Division
    • 330 Temperate Steppe Division
    • 340 Temperate Desert Division
  • 400 Humid Tropical Domain
    • 410 Savanna Division
    • 420 Rainforest Division

Olson & Dinerstein (1998) biomes for WWF / Global 200

[edit]
Terrestrial biomes of the world according to Olson & Dinerstein et al. and used by the WWF and Global 200.
  11. Tundra
  14. Mangroves

A team of biologists convened by the World Wildlife Fund (WWF) developed a scheme that divided the world's land area into biogeographic realms (called "ecozones" in a BBC scheme), and these into ecoregions (Olson & Dinerstein, 1998, etc.). Each ecoregion is characterized by a main biome (also called major habitat type).[23][24]

This classification is used to define the Global 200 list of ecoregions identified by the WWF as priorities for conservation.[23]

For the terrestrial ecoregions, there is a specific EcoID, format XXnnNN (XX is the biogeographic realm, nn is the biome number, NN is the individual number).

Biogeographic realms (terrestrial and freshwater)

[edit]
The western Palearctic terrestrial ecozone has 9 of the 14 biomes numbered by Olson & Dinerstein et al.
  11. Tundra
  Rock and Ice, or Abiotic Land Zones

The applicability of the realms scheme above – based on Udvardy (1975)—to most freshwater taxa is unresolved.[25]

Biogeographic realms (marine)

[edit]

Biomes (terrestrial)

[edit]
  1. Tropical and subtropical moist broadleaf forests (tropical and subtropical, humid)
  2. Tropical and subtropical dry broadleaf forests (tropical and subtropical, semihumid)
  3. Tropical and subtropical coniferous forests (tropical and subtropical, semihumid)
  4. Temperate broadleaf and mixed forests (temperate, humid)
  5. Temperate coniferous forests (temperate, humid to semihumid)
  6. Boreal forests/taiga (subarctic, humid)
  7. Tropical and subtropical grasslands, savannas, and shrublands (tropical and subtropical, semiarid)
  8. Temperate grasslands, savannas, and shrublands (temperate, semiarid)
  9. Flooded grasslands and savannas (temperate to tropical, fresh or brackish water inundated)
  10. Montane grasslands and shrublands (alpine or montane climate)
  11. Tundra (Arctic)
  12. Mediterranean forests, woodlands, and scrub or sclerophyll forests (temperate warm, semihumid to semiarid with winter rainfall)
  13. Deserts and xeric shrublands (temperate to tropical, arid)
  14. Mangrove (subtropical and tropical, salt water inundated)[24]

Biomes (freshwater)

[edit]

According to the WWF, the following are classified as freshwater biomes:[27]

Biomes (marine)

[edit]

Biomes of the coastal and continental shelf areas (neritic zone):

Summary of the scheme

[edit]

Example:

Other biomes

[edit]

Marine biomes

[edit]

Pruvot (1896) zones or "systems":[29]

Longhurst (1998) biomes:[30]

  • Coastal
  • Polar
  • Trade wind
  • Westerly

Other marine habitat types (not covered yet by the Global 200/WWF scheme):[citation needed]

Anthropogenic biomes

[edit]
Anthropogenic biomes have grown dramatically in the past few centuries

Humans have altered global patterns of biodiversity and ecosystem processes. As a result, vegetation forms predicted by conventional biome systems can no longer be observed across much of Earth's land surface as they have been replaced by crops and rangelands or cities. Anthropogenic biomes provide an alternative view of the terrestrial biosphere based on global patterns of sustained direct human interaction with ecosystems, including agriculture, human settlements, urbanization, forestry and other uses of land. Anthropogenic biomes offer a way to recognize the irreversible coupling of human and ecological systems at global scales and manage Earth's biosphere and anthropogenic biomes.

Similarities can be seen between the 14 terrestrial bioregions of Olson & Dinerstein et al. and the 17 land cover classes of the International Geosphere-Biosphere Programme, "which includes 11 natural vegetation classes, 3 developed and mosaicked land classes, and 3 non-vegetated land classes", as detected by satellites.[31]
  Water
  Evergreen Broadleaf forest
  Deciduous Needleleaf Forest
  Deciduous Broadleaf Forest
  Closed Shrubland
  Open Shrubland
  Woody Savannas
  Savannas
  Permanent Wetlands
  Urban and Built-Up
  Cropland/Natural Vegetation Mosaic
  Snow and Ice
  Barren or Sparsely Vegetated

Major anthropogenic biomes:

Microbial biomes

[edit]

Endolithic biomes

[edit]

The endolithic biome, consisting entirely of microscopic life in rock pores and cracks, kilometers beneath the surface, has only recently been discovered, and does not fit well into most classification schemes.[33]

Effects of climate change

[edit]

Anthropogenic climate change has the potential to greatly alter the distribution of Earth's biomes.[34][35] Meaning, biomes around the world could change so much that they would be at risk of becoming new biomes entirely.[36] More specifically, between 54% and 22% of global land area will experience climates that correspond to other biomes.[34] 3.6% of land area will experience climates that are completely new or unusual.[37][38] An example of a biome shift is woody plant encroachment, which can change grass savanna into shrub savanna.[39]

Average temperatures have risen more than twice the usual amount in both arctic and mountainous biomes,[40][41][42] which leads to the conclusion that arctic and mountainous biomes are currently the most vulnerable to climate change.[40] South American terrestrial biomes have been predicted to go through the same temperature trends as arctic and mountainous biomes.[43][44] With its annual average temperature continuing to increase, the moisture currently located in forest biomes will dry up.[43][45]

Predicated changes for Earth's biomes under two different climate change scenarios for 2081–2100. Top row is low emissions scenario, bottom row is high emissions scenario. Biomes are classified with Holdridge life zones system. A shift of 1 or 100% (darker colours) indicates that the region has fully moved into a completely different biome zone type.[46]
Climate change is already now altering biomes, adversely affecting terrestrial and marine ecosystems.[47][48] Climate change represents long-term changes in temperature and average weather patterns.[49][50] This leads to a substantial increase in both the frequency and the intensity of extreme weather events.[51] As a region's climate changes, a change in its flora and fauna follows.[52] For instance, out of 4000 species analyzed by the IPCC Sixth Assessment Report, half were found to have shifted their distribution to higher latitudes or elevations in response to climate change.[53]

See also

[edit]
  • Climate classification – Systems that categorize the world's climates
  • Ecotope – Smallest ecologically distinct landscape features in a landscape mapping and classification system
  • Life zone – Concept developed by C. Hart Merriam in 1889
  • Natural environment – Living and non-living things on Earth

References

[edit]
  1. ^ Bowman, William D.; Hacker, Sally D. (2021). Ecology (5th ed.). Oxford University Press. pp. H3–1–51 A. ISBN 978-1605359212.;
    Meira Neto, J. A. A. (Org.). Fitossociologia no Brasil: métodos e estudos de caso. Vol. 1. Vi?osa: Editora UFV. pp. 44–85. [1] Archived 2025-08-04 at the Wayback Machine. Earlier version, 2003, [2] Archived 2025-08-04 at the Wayback Machine.
  2. ^ Cox, C. B.; Moore, P.D.; Ladle, R. J. (2016). Biogeography: an ecological and evolutionary approach (9th ed.). Hoboken: John Wiley & Sons. p. 20. ISBN 9781118968581. Archived from the original on 2025-08-04 – via Google Books.
  3. ^ Tansley, A.G. (1935). "The use and abuse of vegetational terms and concepts" (PDF). Ecology. 16 (3): 284–307. doi:10.2307/1930070. JSTOR 1930070. Archived from the original (PDF) on 2025-08-04. Retrieved 2025-08-04.
  4. ^ Box, E.O. & Fujiwara, K. (2005). Vegetation types and their broad-scale distribution. In: van der Maarel, E. (ed.). Vegetation ecology. Blackwell Scientific, Oxford. pp. 106–128, [3] Archived 2025-08-04 at the Wayback Machine.
  5. ^ a b Walter, H.; Breckle, S-W. (2002). Walter's Vegetation of the Earth: The Ecological Systems of the Geo-Biosphere. New York: Springer-Verlag. p. 86. ISBN 9783540433156. Archived from the original on 2025-08-04 – via Google Books.
  6. ^ Coutinho, L. M. (2006). "O conceito de bioma" [The biome concept]. Acta Botanica Brasilica (in Portuguese). 20 (1): 13–23. Bibcode:2006AcBBr..20...13C. doi:10.1590/S0102-33062006000100002.
  7. ^ Batalha, M.A. (2011). "The Brazilian cerrado is not a biome". Biota Neotropica. 11: 21–24. doi:10.1590/S1676-06032011000100001.
  8. ^ Fiaschi, P.; Pirani, J.R. (2009). "Review of plant biogeographic studies in Brazil". Journal of Systematics and Evolution. 47 (5): 477–496. Bibcode:2009JSyEv..47..477F. doi:10.1111/j.1759-6831.2009.00046.x. S2CID 84315246. Archived from the original on 2025-08-04.
  9. ^ Schultz, Jürgen (1995). The ecozones of the world. Springer. pp. 2–3. ISBN 978-3-540-28527-4.
  10. ^ Sims, Phillip L.; Singh, J.S. (July 1978). "The Structure and Function of Ten Western North American Grasslands: III. Net Primary Production, Turnover and Efficiencies of Energy Capture and Water Use". Journal of Ecology. 66 (2). British Ecological Society: 573–597. Bibcode:1978JEcol..66..573S. doi:10.2307/2259152. JSTOR 2259152.
  11. ^ Pomeroy, Lawrence R.; Alberts, James J., eds. (1988). Concepts of Ecosystem Ecology. New York: Springer-Verlag.
  12. ^ Allee, W.C. (1949). Principles of animal ecology. Philadelphia: Saunders Co. Archived from the original on 2025-08-04.
  13. ^ Kendeigh, S.C. (1961). Animal ecology. Englewood Cliffs, NJ: Prentice-Hall.
  14. ^ Whittaker, Robert H. (January–March 1962). "Classification of Natural Communities". Botanical Review. 28 (1): 1–239. Bibcode:1962BotRv..28....1W. doi:10.1007/BF02860872. S2CID 25771073.
  15. ^ a b Whittaker, Robert H. (1975). Communities and Ecosystems. New York: MacMillan Publishing.
  16. ^ Whittaker, R. H. (1970). Communities and Ecosystems. Toronto, pp. 51–64, [4].
  17. ^ Goodall, D. W. (ed.). Ecosystems of the World. Vol. 36. Amsterdam: Elsevier. Archived from the original on 2025-08-04.
  18. ^ Walter, H. (1976). Die ?kologischen Systeme der Kontinente (Biogeosph?re). Prinzipien ihrer Gliederung mit Beispielen [The ecological systems of the continents (biogeosphere). Principles of their outline with examples] (in German). Stuttgart.{{cite book}}: CS1 maint: location missing publisher (link)
  19. ^ Walter, H.; Breckle, S-W. (1991). ?kologie der Erde [Ecology of the Earth] (in German). Vol. 1, Grundlagen. Stuttgart.{{cite book}}: CS1 maint: location missing publisher (link)
  20. ^ Schultz, J. Die ?kozonen der Erde, 1st ed., Ulmer, Stuttgart, Germany, 1988, 488 pp.; 2nd ed., 1995, 535 pp.; 3rd ed., 2002; 4th ed., 2008; 5th ed., 2016. Transl.: The Ecozones of the World: The Ecological Divisions of the Geosphere. Berlin: Springer-Verlag, 1995; 2nd ed., 2005, [5].
  21. ^ "Bailey System". US Forest Service. Archived from the original on 2025-08-04.
  22. ^ Bailey, R. G. (1989). "Explanatory supplement to ecoregions map of the continents". Environmental Conservation. 16 (4): 307–309. Bibcode:1989EnvCo..16..307B. doi:10.1017/S0376892900009711. S2CID 83599915. [With map of land-masses of the world, "Ecoregions of the Continents – Scale 1 : 30,000,000", published as a supplement.]
  23. ^ a b Olson, D. M. & E. Dinerstein (1998). The Global 200: A representation approach to conserving the Earth's most biologically valuable ecoregions. Conservation Biol. 12:502–515, [6] Archived 2025-08-04 at the Wayback Machine.
  24. ^ a b c Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., Kassem, K. R. (2001). Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51(11):933–938, [7] Archived 2025-08-04 at the Wayback Machine.
  25. ^ Abell, R., M. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. Contreras-Balderas, W. Bussing, M. L. J. Stiassny, P. Skelton, G. R. Allen, P. Unmack, A. Naseka, R. Ng, N. Sindorf, J. Robertson, E. Armijo, J. Higgins, T. J. Heibel, E. Wikramanayake, D. Olson, H. L. Lopez, R. E. d. Reis, J. G. Lundberg, M. H. Sabaj Perez, and P. Petry. (2008). Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. BioScience 58:403–414, [8] Archived 2025-08-04 at the Wayback Machine.
  26. ^ Spalding, M. D. et al. (2007). Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57: 573–583, [9] Archived 2025-08-04 at the Wayback Machine.
  27. ^ "Freshwater Ecoregions of the World: Major Habitat Types" "Freshwater Ecoregions of the World". Archived from the original on 2025-08-04. Retrieved 2025-08-04.
  28. ^ "Marine Ecoregions of the World". World Wide Fund. Archived from the original on 2025-08-04.
  29. ^ Pruvot, G. (1896). Conditions générales de la vie dans les mers et principes de distribution des organismes marins: Année Biologique [General conditions of life in the seas and principles of distribution of marine organisms: Biological Year] (in French). Vol. 2. pp. 559–587. Archived from the original on 2025-08-04.
  30. ^ Longhurst, A. (1998). Ecological Geography of the Sea. San Diego: Academic Press. ISBN 9780124555594 – via Google Books.
  31. ^ "MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG – LAADS DAAC".
  32. ^ Zimmer, Carl (March 19, 2015). "The Next Frontier: The Great Indoors". The New York Times. Archived from the original on June 14, 2018. Retrieved 2025-08-04.
  33. ^ "What is the Endolithic Biome? (with picture)". wiseGEEK. Archived from the original on 2025-08-04. Retrieved 2025-08-04.
  34. ^ a b Dobrowski, Solomon Z.; Littlefield, Caitlin E.; Lyons, Drew S.; Hollenberg, Clark; Carroll, Carlos; Parks, Sean A.; Abatzoglou, John T.; Hegewisch, Katherine; Gage, Josh (September 29, 2021). "Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes". Communications Earth & Environment. 2 (1): 198. Bibcode:2021ComEE...2..198D. doi:10.1038/s43247-021-00270-z. S2CID 238208819.
  35. ^ Rockstr?m, Johan; Steffen, Will; Noone, Kevin (2025-08-04), ""A Safe Operating Space for Humanity" (2009)", The Future of Nature, Yale University Press, pp. 491–505, doi:10.12987/9780300188479-042, ISBN 9780300188479, S2CID 246162286, retrieved 2025-08-04
  36. ^ Nolan, Connor; Overpeck, Jonathan T.; Allen, Judy R. M.; Anderson, Patricia M.; Betancourt, Julio L.; Binney, Heather A.; Brewer, Simon; Bush, Mark B.; Chase, Brian M.; Cheddadi, Rachid; Djamali, Morteza; Dodson, John; Edwards, Mary E.; Gosling, William D.; Haberle, Simon (2025-08-04). "Past and future global transformation of terrestrial ecosystems under climate change". Science. 361 (6405): 920–923. Bibcode:2018Sci...361..920N. doi:10.1126/science.aan5360. ISSN 0036-8075. PMID 30166491. S2CID 52131254.
  37. ^ Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A. (2025-08-04). "Multivariate climate departures have outpaced univariate changes across global lands". Scientific Reports. 10 (1): 3891. Bibcode:2020NatSR..10.3891A. doi:10.1038/s41598-020-60270-5. ISSN 2045-2322. PMC 7054431. PMID 32127547.
  38. ^ Williams, John W.; Jackson, Stephen T.; Kutzbach, John E. (2025-08-04). "Projected distributions of novel and disappearing climates by 2100 AD". Proceedings of the National Academy of Sciences. 104 (14): 5738–5742. Bibcode:2007PNAS..104.5738W. doi:10.1073/pnas.0606292104. ISSN 0027-8424. PMC 1851561. PMID 17389402.
  39. ^ Stevens, Nicola; Lehmann, Caroline E. R.; Murphy, Brett P.; Durigan, Giselda (January 2017). "Savanna woody encroachment is widespread across three continents". Global Change Biology. 23 (1): 235–244. Bibcode:2017GCBio..23..235S. doi:10.1111/gcb.13409. hdl:20.500.11820/ff572887-5c50-4c25-8b65-a9ce5bd8ea2a. ISSN 1354-1013. PMID 27371937.
  40. ^ a b De Boeck, Hans J.; Hiltbrunner, Erika; Jentsch, Anke; Vandvik, Vigdis (2025-08-04). "Editorial: Responses to Climate Change in the Cold Biomes". Frontiers in Plant Science. 10: 347. doi:10.3389/fpls.2019.00347. ISSN 1664-462X. PMC 6447700. PMID 30984216.
  41. ^ Gobiet, Andreas; Kotlarski, Sven; Beniston, Martin; Heinrich, Georg; Rajczak, Jan; Stoffel, Markus (September 15, 2014). "21st century climate change in the European Alps—A review". Science of the Total Environment. 493: 1138–1151. Bibcode:2014ScTEn.493.1138G. doi:10.1016/j.scitotenv.2013.07.050. hdl:20.500.11850/87298. PMID 23953405.
  42. ^ Johannessen, Ola M.; Kuzmina, Svetlana I.; Bobylev, Leonid P.; Miles, Martin W. (2025-08-04). "Surface air temperature variability and trends in the Arctic: new amplification assessment and regionalisation". Tellus A: Dynamic Meteorology and Oceanography. 68 (1): 28234. Bibcode:2016TellA..6828234J. doi:10.3402/tellusa.v68.28234. ISSN 1600-0870. S2CID 123468873.
  43. ^ a b Anjos, Luciano J. S.; Barreiros de Souza, Everaldo; Amaral, Calil Torres; Igawa, Tassio Koiti; Mann de Toledo, Peter (2025-08-04). "Future projections for terrestrial biomes indicate widespread warming and moisture reduction in forests up to 2100 in South America". Global Ecology and Conservation. 25: e01441. Bibcode:2021GEcoC..2501441A. doi:10.1016/j.gecco.2020.e01441. ISSN 2351-9894. S2CID 234107449.
  44. ^ Locosselli, Giuliano Maselli; Brienen, Roel J. W.; Leite, Melina de Souza; Gloor, Manuel; Krottenthaler, Stefan; Oliveira, Alexandre A. de; Barichivich, Jonathan; Anhuf, Dieter; Ceccantini, Gregorio; Sch?ngart, Jochen; Buckeridge, Marcos (2025-08-04). "Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature". Proceedings of the National Academy of Sciences. 117 (52): 33358–33364. Bibcode:2020PNAS..11733358M. doi:10.1073/pnas.2003873117. ISSN 0027-8424. PMC 7776984. PMID 33318167.
  45. ^ Marcolla, Barbara; Migliavacca, Mirco; R?denbeck, Christian; Cescatti, Alessandro (2025-08-04). "Patterns and trends of the dominant environmental controls of net biome productivity". Biogeosciences. 17 (8): 2365–2379. Bibcode:2020BGeo...17.2365M. doi:10.5194/bg-17-2365-2020. hdl:10449/64139. ISSN 1726-4170. S2CID 219056644.
  46. ^ Kummu, Matti; Heino, Matias; Taka, Maija; Varis, Olli; Viviroli, Daniel (21 May 2021). "Climate change risks pushing one-third of global food production outside the safe climatic space". One Earth. 4 (5): 720–729. Bibcode:2021OEart...4..720K. doi:10.1016/j.oneear.2021.04.017. PMC 8158176. PMID 34056573.
  47. ^ "IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial Ecosystems:Summary for Policymakers" (PDF).
  48. ^ "Summary for Policymakers — Special Report on the Ocean and Cryosphere in a Changing Climate". Retrieved 2025-08-04.
  49. ^ "Climate Change". National Geographic. 28 March 2019. Retrieved 1 November 2021.
  50. ^ Witze, Alexandra. "Why extreme rains are gaining strength as the climate warms". Nature. Retrieved 30 July 2021.
  51. ^ "Summary for Policymakers". Climate Change 2021: The Physical Science Basis. Working Group I contribution to the WGI Sixth Assessment Report of the Intergovernmental Panel on Climate Change (PDF). Intergovernmental Panel on Climate Change. 9 August 2021. p. SPM-23; Fig. SPM.6. Archived (PDF) from the original on 4 November 2021.
  52. ^ Van der Putten, Wim H.; Macel, Mirka; Visser, Marcel E. (2025-08-04). "Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels". Philosophical Transactions of the Royal Society B: Biological Sciences. 365 (1549): 2025–2034. doi:10.1098/rstb.2010.0037. PMC 2880132. PMID 20513711.
  53. ^ Parmesan, C., M.D. Morecroft, Y. Trisurat, R. Adrian, G.Z. Anshari, A. Arneth, Q. Gao, P. Gonzalez, R. Harris, J. Price, N. Stevens, and G.H. Talukdarr, 2022: Chapter 2: Terrestrial and Freshwater Ecosystems and Their Services. In Climate Change 2022: Impacts, Adaptation and Vulnerability [H.-O. P?rtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. L?schke,V. M?ller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 257-260 |doi=10.1017/9781009325844.004

Further reading

[edit]
[edit]
8月27日什么星座 曹操字什么 六块钱的麻辣烫是什么意思 铁锈红配什么颜色好看 老公梦见蛇是什么预兆
黑洞到底是什么 外科主要看什么病 荨麻疹要用什么药 前夫是什么意思 什么的蜡烛
胆固醇高吃什么 瞳字五行属什么 经期适合吃什么 凯莉包是什么牌子 镉是什么东西
骨质疏松检查什么项目 荞头是什么 微醺什么意思 名声大噪是什么意思 一个兹一个子念什么
武松是什么生肖hcv8jop8ns1r.cn 大骨头炖什么好吃hebeidezhi.com 婆媳关系为什么难相处hcv9jop5ns4r.cn dr和ct有什么区别hcv8jop6ns8r.cn 心电监护pr是什么意思hcv8jop8ns5r.cn
和可以组什么词hcv8jop0ns7r.cn 老母鸡煲汤放什么食材补气补血hcv7jop7ns3r.cn 子加一笔是什么字hcv7jop9ns3r.cn 晚饭吃什么英语怎么说hcv7jop6ns2r.cn 梦到头发长长了是什么意思hcv9jop5ns5r.cn
吃秋葵有什么好处hcv8jop6ns1r.cn 嗪读什么hcv7jop7ns0r.cn 小孩睡觉出汗多是什么原因hcv9jop5ns9r.cn v1是什么意思hcv9jop2ns8r.cn 菊花搭配什么泡茶最好hcv7jop4ns8r.cn
咳嗽痰多用什么药hcv9jop0ns5r.cn 骨髓穿刺能查出什么病hcv9jop7ns2r.cn 爱理不理是什么意思hcv8jop6ns1r.cn 檄文是什么意思hcv8jop3ns8r.cn 伤元气是什么意思hcv9jop1ns5r.cn
百度